Complete Genome Sequence of Bradyrhizobium sp. ORS285, a Photosynthetic Strain Able To Establish Nod Factor-Dependent or Nod Factor-Independent Symbiosis with Aeschynomene Legumes
نویسندگان
چکیده
Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS285, which is able to nodulate Aeschynomene legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes.
منابع مشابه
NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes
Photosynthetic Bradyrhizobium strain ORS285 forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. Depending on the Aeschynomene species, this symbiotic interaction does or does not rely on the synthesis of Nod-factors (NFs). However, whether during the interaction of Bradyrhizobium ORS285 with NF-independent Aeschynomene species the nod gene...
متن کاملThe LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected...
متن کاملComparative Genomics of Aeschynomene Symbionts: Insights into the Ecological Lifestyle of Nod-Independent Photosynthetic Bradyrhizobia
Tropical aquatic species of the legume genus Aeschynomene are stem- and root-nodulated by bradyrhizobia strains that exhibit atypical features such as photosynthetic capacities or the use of a nod gene-dependent (ND) or a nod gene-independent (NI) pathway to enter into symbiosis with legumes. In this study we used a comparative genomics approach on nine Aeschynomene symbionts representative of ...
متن کاملCharacterization of the common nodulation genes of the photosynthetic Bradyrhizobium sp. ORS285 reveals the presence of a new insertion sequence upstream of nodA.
We isolated and characterized nodA genes from photosynthetic and non-photosynthetic rhizobia nodulating the legume genus Aeschynomene, and found that the nodA sequence from photosynthetic stem-nodulating bacteria was phylogenetically distant from the other already described nodA genes. Characterization of the photosynthetic strain ORS285 common nod gene cluster (nodABC) showed, upstream of nodA...
متن کاملGenome Analysis of a Novel Bradyrhizobium sp. DOA9 Carrying a Symbiotic Plasmid
Bradyrhizobium sp. DOA9 isolated from the legume Aeschynomene americana exhibited a broad host range and divergent nodulation (nod) genes compared with other members of the Bradyrhizobiaceae. Genome analysis of DOA9 revealed that its genome comprised a single chromosome of 7.1 Mbp and a plasmid of 0.7 Mbp. The chromosome showed highest similarity with that of the nod gene-harboring soybean symb...
متن کامل